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The Nuclear Fuel Cycle
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Review of GHG Emissions from Nuclear Fuel Cycle
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Breakdown of GHG Emissions from Nuclear 
Fuel Cycle

0

5

10

15

20

25

Vattenfall 2002,
Sweden

Hondo 2005, Japan Dones et al, 2005,
Switzerland PWR

Dones et al, 2005,
Switzerland BWR 

GH
G 

(g
 C

O 2
-e

q.
/kW

h)

Waste Disp.
Operation
Const./Decomm.
Enrichment
Conv./Fab.
Minning/milling

D (France): 20%  
C: 80%

D (US): 67% 
D (France): 22%
C: 11%

D (France): 60% 
C: 40% 

D (US):13%
D (France): 55%
C: 32%

D: Diffusion enrichment  C: Gas centrifuge enrichment



5

20%  coal 
80%  Tennessee Valley Authority grid 

Upstream Electricity Mix
for enrichment

3.8/ 0.25

35

85

0.2

- Diffusion (US)-34%
(France)-11%

- Centrifuge (mix)-19%
- dilution highly enriched uranium (Russia)-36%

42
40

Product/tail assay (% U235)

Thermal efficiency (%)

Ore grade (% U3O8)

Capacity factor (%)

Enrichment mix (%)
EIA -1998-2002 

Burn-up (MWdth/kgU)
Reactor lifetime (yrs)

BNL Reference Case -Conditions for US 
Nuclear Fuel Cycle



6

BNL Study -Scenarios for GHG Estimation of 
US Nuclear Fuel Cycle

a: Separative Work Unit 
b: Tennessee Valley Authority
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BNL Study -US Nuclear Fuel Cycle:  GHG Emissions
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GHG Emissions from the Nuclear Fuel Cycle: 
Comparisons of different studies
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Process Based vs. Economic Input/Output LCA
Example: Construction –1 GW NPP-
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EI/O LCA may overestimate GHG emissions 
Process-based LCA may slightly underestimate GHG emissions
Degree of overestimate of underestimate depends on the detail of material and energy inventories
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Framework for Evaluation of Life-Cycle Risks
in Electricity Production
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Accidental Risks in Electricity Production
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Maximum Consequences per Accident
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Climate Change and Fossil Fuel Depletion Risks
-Is there a tenable solution ?

Nuclear Energy
• Spent fuel management 
• Proliferation risks  

Coal with C sequestration
• Reliability/Cost 
• Residual pollution

Wind
• Resource limits
• Intermittency

Solar
• Cost
• Intermittency
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The President’s Advanced Energy Initiative

Initiated significant new investments and policies in:

Clean Coal technology
Nuclear Power
• Global Nuclear Energy Partnership (GNEP) to address spent 

nuclear fuel, eliminate proliferation risks, and expand the promise 
of clean, reliable, and affordable nuclear energy 

Renewable Solar and Wind energy
• Reduce the cost of solar PV technologies so that they become 

cost-effective by 2015 and expand access to wind energy.
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The President’s Advanced Energy Initiative

“To safeguard our future economic health as well as national security, 
we must move aggressively to diversify our energy sources.”

-DOE Secretary Samuel Bodman
Golden, CO, July 7, 2006

“I’d put my money on the sun and solar energy. What a source of power! 
I hope we don’t have to wait till oil and coal run out before we tackle that.”

-Thomas Edison
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The Solar America Initiative (SAI)

SAI Goal: Achieve Grid Parity Nationwide by 2015
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Solar Solutions to Climate Change and Energy Self-Reliance*

200,000 square miles of 
desert land in the SW is 
suitable for constructing solar 
power plants
This area receives 3,600 
quadrillion Btu of solar 
irradiation per year. 
If just  3% of this energy is 
converted to electricity, we 
satisfy the total US annual 
energy consumption.
Throughout the rest of the 
country, sunlight can be used 
for distributed (rooftop) PV 
systems.

*From Zweibel, Mason, Fthenakis. 
“An Imminent Solar Solution to Climate Change and Energy Security for the US”, in press
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Solar Solutions to Climate Change and Energy Self-Reliance*

PV and compressed air energy 
storage (CAES) for 24-hour 
electricity
Concentrating Solar Power with 
heat storage, also dispatchable
Plug-in hybrids powered by solar 
electric (80%) and biofuels (20%)
Wind as complement and 
nighttime backup to solar
Low-cost solar, an essential, 
enabling technology
US SW solar enough to provide 
US energy self-sufficiency

*From Zweibel, Mason, Fthenakis. 
“An Imminent Solar Solution to Climate Change and Energy Security for the US”, in press
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Conclusions

• A Life Cycle Framework is necessary for a complete 
description of the sustainability of energy technologies

• It enables a holistic approach encompassing resource 
availability and costs, potential risks and benefits to the US 
economy and the environment for current and future 
generations

www.pv.bnl.gov
www.clca.columbia.edu
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